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Optimization of Subgridding Schemes for FDTD
Shumin Wang, Fernando L. Teixeira, Robert Lee, and Jin-Fa Lee

Abstract—A procedure to optimize the coupling coefficients be-
tween fine and coarse mesh regions for two-dimensional (2-D) fi-
nite-difference time-domain (FDTD) subgridding algorithms is in-
troduced. The coefficients are optimized with respect to different
angles and expanded in a form suitable for FDTD computation.

Index Terms—FDTD method, subgridding.

I. INTRODUCTION

T O BETTER model problems with disparate geometrical
sizes, mesh refinement is often used in partial differen-

tial equation (PDE) based methods. Mesh refinement allows
for the use of different cells sizes over different regions in the
mesh and are instrumental in saving computational resources.
In the finite-difference time-domain (FDTD) method, these al-
gorithms are usually referred to assubgriddingalgorithms, e.g.,
[1]–[5]. However, because of the hyperbolic nature of time-do-
main equations, the fine and coarse mesh regions need to be
adequately coupled at their respective boundaries. Usually, spu-
rious reflections are produced at those boundaries due to the
mismatch in both the discrete wave numbers and discrete im-
pedances at each region (both of which depend on the cell size).
In this work, we introduce a systematic way to optimize the cou-
pling coefficients for two-dimensional (2-D) subgridding algo-
rithms in order to minimize the spurious reflections over a broad
range of frequencies.

II. SUBGRIDDING ALGORITHM

Fig. 1 depicts the case of the 2-D-subgridding algo-
rithm with a coarse-to-fine refinement ratio of 3 : 1. Capital let-
ters denote coarse region fields and lower case letters denote
fine region fields. Although not strictly necessary, odd ratios are
convenient to yield collocated fields and preserve dual grid
symmetry. Moreover, to avoid large impedance mismatching,
we focus on the 3 : 1 case. If a higher refinement ratio is needed,
the algorithm could be applied successively. For stability con-
cerns, we use the same time step in coarse and fine domains and
explicitly enforce reciprocity in the field update [6], [7] at the
coarse/fine transition region.

The subgridding algorithm consists of five steps. 1) At time
, is calculated in the coarse region up to the location

indexed by 0 in Fig. 1. 2) Using spatial interpolation, the missing
are obtained at time at the location indexed by
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Fig. 1. Coarse–fine region boundary.

1.5. For collocated field components, the coarse region values
are used directly. 3) The ordinary Yee’s algorithm is applied to
update the and fields in the fine region from the locations
indexed by 2 and above at timeand , respectively.
4) Reciprocity is used to calculate at the location
indexed by 1.5. Other in the coarse region are
also calculated by ordinary Yee’s algorithm. 5) Let .

III. OPTIMIZATION

A. Three-Point Coupling Scheme

In the above subgridding scheme, mesh coupling occurs when
obtaining at the location indexed by 1.5 in Fig. 1. We as-
sume a nearest neighbor three-point coupling forat location
indexed by 2 in the general form

(1)

Inserting the plane wave solutions (eigenfunctions in the con-
tinuum limit) of Maxwell’s equations, we obtain

(2)

(3)

(4)

(5)

where is the cell size in coarse region, is the wave
number, is the magnitude of the electric field, is the
wave impedance, andis the incident angle with respect to the
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positive -axis. The relative location of , , and is
depicted in Fig. 1. Substituting (2)–(5) into (1), we obtain

(6)

To solve for the coefficients in (6), we employ the ansatz below

(7)

where

(8)

defines the coupling error. Since can be expanded in a
Fourier series in terms of and , it is clear that
(7) is equivalent to enforcing the first three terms in the series
to be zero. The remaining terms in the series are proportional
to integrals on the form and

and can be expressed in
terms of first kind Bessel functions with real argument

. This is because

for odd

for even

for odd

for even

where . Moreover, since
the condition is usually met in practical FDTD simu-
lations. Also, since for , the con-
tributions of the higher order neglected terms decrease rapidly
as the order increases, i.e., if additional and/or are used
in the interpolation scheme. By using two values ofand one
value of , the first three most significant terms in the coupling
error are made equal to zero, as enforced by (7).

After solving the integrals in (7), we obtain

(9)

Solving for , , and yields

(10)

By expanding (10) in a Taylor series on and transforming the
results to time domain, we obtain

(11)

where is the coarse region CFL number, is the discrete
time step, is the angular frequency, andis the permittivity.
Note that in deriving the above equations, we have applied the
following identities

(12)

The coefficients in (11) are normalized so that the right hand
sides can be inserted in the FDTD update directly. The second
order time derivatives in (11) can also be replaced by second
order space derivatives via Helmholtz equation. The derivative
terms can be though of as dispersion correction terms which
compensate for the difference in propagation constants and im-
pedances between the fine and coarse regions. By dropping the
second order time derivatives in , , and , the scheme
would reduce to a simple linear interpolation of an elliptic equa-
tion (static limit or conventional subgridding).

B. Higher Order, Five-Point Coupling Scheme

Higher order subgridding schemes utilize more than three
points for the nearest neighbor coupling in (1). We have also
examined five-point layout schemes. The optimized coefficients
for a given five-point layout scheme can be derived in a similar
way as done before for the three-point scheme. While different
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Fig. 2. Reflection levels at 0.

five-point coupling layouts are possible, a satisfactory one uses
two extra values for in the coarse region,viz., one at the
grid point directly below and the other at the grid point di-
rectly above in Fig. 1. An equation similar to (6) (now with
five coefficients to solve for) can then be obtained, whose co-
efficients are solved using an ansatz similar to (7), now also in-
volving projections on and also. As mentioned
before, the use of more points allows for these additional terms
in the Fourier expansion of the coupling error to be made equal
to zero, and hence produce a smaller overall residual error. The
obvious drawbacks are loss of sparsity and increased computa-
tional cost.

IV. NUMERICAL RESULTS

We have run simulations on a coarse-fine region boundary of
large FDTD domains avoiding interference from the corners and
the mesh termination. Figs. 2 and 3 show the spurious relative
reflection levels from the subgridding boundary as a function of
frequency and angle. The cell size is equal to at the highest
frequency considered, GHz, and the CFL number is

(fine region value).
From Fig. 2, we observe that, at small incidence angles, the

three-point linear interpolation has a performance comparable
to the five-point linear interpolation. This is expected because
for plane wave normal incidence, a larger stencil on the trans-
verse direction is not important. For oblique incidence angles,
the performance of the three-point linear interpolation deterio-
rates. On the other hand, if the second order derivative terms
are used, the performance is better than linear interpolation at
45 , but deteriorates at 0, exhibiting complementary behavior
according to the incident angle. This behavior can be explored
when implementing subgridding schemes in different regions
of a FDTD grid. As expected, the five-point linear interpolation
has a smaller spurious reflection overall and largest reflection

Fig. 3. Reflection levels at 45.

levels at 0. Note that the ansatz in (7) is not unique or not nec-
essarily optimal in any problem. Other possibilities could also
be explored. In particular, any a priori information about the ge-
ometry of the problem, if available, can be used in designing
different schemes.

V. CONCLUSION

Subgridding schemes are plagued by spurious reflections
caused by the mismatch of the (discrete) wavenumbers and
impedances between the coarse and fine meshes. In this work,
we have introduced a procedure to reduce such reflections.
Results from the application of the procedure to a 3 : 1 sub-
gridding algorithm in 2-D FDTD have shown that the spurious
reflections can be minimized for different angles in a wide
range of frequencies.
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