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Optimization of Subgridding Schemes for FDTD

Shumin Wang, Fernando L. Teixeira, Robert Lee, and Jin-Fa Lee

Abstract—A procedure to optimize the coupling coefficients be-
tween fine and coarse mesh regions for two-dimensional (2-D) fi-
nite-difference time-domain (FDTD) subgridding algorithms is in-
troduced. The coefficients are optimized with respect to different H
angles and expanded in a form suitable for FDTD computation. 1 e %2

Index Terms—FDTD method, subgridding.

. INTRODUCTION >

O BETTER model problems with disparate geometrical €y foz,

sizes, mesh refinement is often used in partial differen-
tial equation (PDE) based methods. Mesh refinement allows Ey H,
for the use of different cells sizes over different regions in the
mesh and are instrumental in saving computational resources.
In the finite-difference time-domain (FDTD) method, these al-
gorithms are usually referred to sisbgriddingalgorithms, e.g., >
[1]-[5]. However, because of the hyperbolic nature of time-do- 0 05 1 15 2 25 3 35 4 45 5 55 6
main equations, the fine and coarse mesh regions need to be
adequately coupled at their respective boundaries. Usually, Spid-1. Coarse—fine region boundary.
rious reflections are produced at those boundaries due to the

mismatch in both the discrete wave numbers and discrete iT- , .
edances at each region (both of which depend on the cell Size.rz. For collocated field components, the coarse region values
P 3 used directly. 3) The ordinary Yee's algorithm is applied to

. . . .. al
In_th|s work,we introduce gsyste_mancway 0 °'°“r.“'z? the COIlJJ_pdate the: and/: fields in the fine region from the locations
pling coefficients for two-dimensional (2-D) subgridding algo- . .

. ) o . . indexed by 2 and above at timigandt; + 6t/2, respectively.
rithms in order to minimize the spurious reflections over a bro . o :
range of frequencies Reciprocity is used to calculafé. (¢, + 6t/2) at the location

' indexed by 1.5. OtheH . (¢; + 6t/2) in the coarse region are
also calculated by ordinary Yee's algorithm. 5) ket ¢ + 1.

Il. SUBGRIDDING ALGORITHM

Fig. 1 depicts thel’E, case of the 2-D-subgridding algo- IIl. OPTIMIZATION
rithm with a coarse-to-fine refinement ratio of 3: 1. Capital let-
ters denote coarse region fields and lower case letters deﬁ%teT
fine region fields. Although not strictly necessary, odd ratios are In the above subgridding scheme, mesh coupling occurs when
convenient to yield collocateH . fields and preserve dual grid obtaining/.. at the location indexed by 1.5 in Fig. 1. We as-
symmetry. Moreover, to avoid large impedance mismatchingyme a nearest neighbor three-point coupling:=foat location
we focus on the 3: 1 case. If a higher refinement ratio is need#étijexed by 2 in the general form
the algorithm could be applied successively. For stability con-

hree-Point Coupling Scheme

cerns, we use the same time step in coarse and fine domains and ey = C1H 1 + CoH o + Cshe3. 1)
explicitly enforce reciprocity in the field update [6], [7] at the
coarsef/fine transition region. Inserting the plane wave solutions (eigenfunctions in the con-

The subgridding algorithm consists of five steps. 1) At timénuum limit) of Maxwell's equations, we obtain
t;, E,(t;) is calculated in the coarse region up to the location

indexed by 0in Fig. 1. 2) Using spatial interpolation, the missing H.i =7~ Egcikh cos®)/6gikhsin(8)/3 2)
h. are obtained at time; — §¢/2 at the location indexed by H.o =1t Ege/™ cos(6)/6 ,—2jkh sin(8)/3 ©)
hzg _ 7’]_1E06_jkh cos(8)/6 (4)
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positive z-axis. The relative location off.;, H.», andh_3 is Solving forCy, Co, andCj yields

depicted in Fig. 1. Substituting (2)—(5) into (1), we obtain
, o , Cy = —jV/35n0 (\/17kh/6) Jo (kh/6) /
7 Cos 6 — Cle]kh cos(@)/Gejkh sin(6)/3 + CQ@jkh cos(68)/6

L~ 2ksin(@)/3 | oy o —ikhcos(®)/6 (@) [17J0 (\/1_7kh/6) J1 (kh/6) J1 (\/Bkh/G)

To solve for the coefficients in (6), we employ the ansatz below +2V85J (\/Ekh/G) Sy (kh/6) 1, (\/1_7kh/6)
/‘M 5(6)d6 —o + 3VIT, (\/1_7kh /6) Jo (kh/6) Jy (\/Ekh/G)}
LU0 Cy =—jv/85nJo (kh/6) Jy (\@kh/(a) /
| 0(0)sin(6) b =0 (28500 (VITER/6) Jy (k1/6) J1 (V3kh/6)
/0 " 5(6) cos(8) df =0 @ +80J (V/5kh/6) Jy (kh/6) Jy (V1TkR/6)
where + 6V51 (VITRR/6) Jo (kh/6) Jy (V3kD/6)]
8(8) = ncosd — |:ejkh cos(6)/6 (Clejkh sin(6)/3 Cs =jn [\/1_7.]0 (\/1_7kh/6) Jy (\/Ekh/G)
+026—2jklzsin(0)/3) 4 Cye— ik cos(@)/6:| ®) + 2v/5.; (\/ﬁkh/G) Jo (\/Skh/G)}/

defines the coupling error. Sing&#) can be expanded in a [2\/ﬁ‘]0 (\/ﬁkh/G) S (kR/6) Ty (\/Skh/G)

Fourier series in terms abs(nf) andsin(né), it is clear that + 4v5J, (\@kh/(;) Iy (kh/6) Jy (\/ﬁkh/G)

(7) is equivalent to enforcing the first three terms in the series

to be zero. The remaining terms in the series are proportional + 6J; (\/1_7kh/6) Jo (kh/6) J1 (\/Bkh/Gﬂ . (10)
to integrals on the form)2" ¢/l cos(@)+5 5] iy (ng) dg and
[T Hlorcos(@)+35in(®)] cos(n@) df and can be expressed in
terms of first kind Bessel functiong, («) with real argument
|z] < 1/2. This is because JwheCy /3 —2/3 — (1/24x%) At202 + O((kh)Y)

T s 2 2452 4
/2 il cos(O)+05m6)] iy (16) d JwheCz[3 — 1/3 — (7/144x7)At"0; + O((kh)")
0 JwheCs3/3 — —1— (1/48x2)A20? + O((kh)*)  (11)

By expanding (10) in a Taylor series &h and transforming the
results to time domain, we obtain

{j27r cos(nbo)J, (\/042 + /32) , foroddn wherey is the coarse region CFL numbeXt is the discrete
= . time stepyw is the angular frequency, ards the permittivity.
— 2 2
2m sin(nbo)Jn (V ot +f ) , forevenn Note that in deriving the above equations, we have applied the
o following identities
jlacos(8)+3 sin(6)]
/0 e’ cos(nf) df CAL
X=V2Ts
j2m sin(nfo)J, (\/ o? + 32 ) , foroddn 3
= =Y =, YE
27 cos(nbo)J, (\/042 + /32) , forevenn kh = - h=w X At. (12)

The coefficients in (11) are normalized so that the right hand
sides can be inserted in the FDTD update directly. The second

lations. Also, sinceJ, (z)| < 1/(2" - n!) for |z| < 1, the con- order time derivatives in (11) can also be replaced by second

tributions of the higher order neglected terms decrease rapi?e&jrﬁg Sc%icis(iggitmeifvil_é?slm:rzlitgnegs;igzb:rlgr(rj:sm\l/\?r?i\é i
as the order increases, i.e., if additiolhl and/or/., are used 9 P

in the interpolation scheme. By using two valueghfand one compensate for the difference in propagation constants and im-

value ofh, the first three most significant terms in the Coup”ngedances between the_ fmg and_ coarse regions. By dropping the
econd order time derivatives i, Cs, andC3, the scheme
error are made equal to zero, as enforced by (7).

After solving the integrals in (7), we obtain vyould reduge t[O asimple Ilpear |nterpqlat!on of an elliptic equa-
tion (static limit or conventional subgridding).
Jo(\/5kh/6) Jo(\/17TkR /6) Jo(kh/6)
Ti(V5kh[6)/\/5  —20,(VTTkh/6)/V/TT 0
J1(V5kh/6) /5 JU(V1TER[6) /1T —J1(kh/6)

wherefy = arctan(w/3). Moreover,\/a? + 32 < 1/2 since
the conditionh < A/10 is usually met in practical FDTD simu-

B. Higher Order, Five-Point Coupling Scheme

Higher order subgridding schemes utilize more than three
points for the nearest neighbor coupling in (1). We have also

Ci 0 examined five-point layout schemes. The optimized coefficients
| Ca | = 0 (9) for a given five-point layout scheme can be derived in a similar
Cs —in/2 way as done before for the three-point scheme. While different
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five-point coupling layouts are possible, a satisfactory one ug§e|s at 9. Note that the ansatz in (7) is not unique or not nec-

two extra values foi in the coarse regionyiz, one at the gsqrily optimal in any problem. Other possibilities could also
grid point directly belowsZ., and the other at the grid point di- )¢ oy niored. In particular, any a priori information about the ge-

rgctly abqv_eHZ2 in Fig. 1. An equation similar to. (6) (now with ometry of the problem, if available, can be used in designing
five coefficients to solve for) can then be obtained, whose CQifferent schemes.

efficients are solved using an ansatz similar to (7), now also in-
volving projections orin(28) andcos(26) also. As mentioned
before, the use of more points allows for these additional terms
in the Fourier expansion of the coupling error to be made equalSubgridding schemes are plagued by spurious reflections
to zero, and hence produce a smaller overall residual error. Tdased by the mismatch of the (discrete) wavenumbers and
obvious drawbacks are loss of sparsity and increased compuitapedances between the coarse and fine meshes. In this work,
tional cost. we have introduced a procedure to reduce such reflections.
Results from the application of the procedure to a 3:1 sub-
IV. NUMERICAL RESULTS gridding algorithm in 2-D FDTD have shown that the spurious

We have run simulations on a coarse-fine region boundaryrgl’clecnofnfS can b? minimized for different angles in a wide
large FDTD domains avoiding interference from the corners afy'9€ ot frequencies.

V. CONCLUSION

the mesh termination. Figs. 2 and 3 show the spurious relative
reflection levels from the subgridding boundary as a function of

frequency and angle. The cell size is equal a0 at the highest  [1]
frequency considered; = 10 GHz, and the CFL number is
x = 1.0 (fine region value). 2

From Fig. 2, we observe that, at small incidence angles, the
three-point linear interpolation has a performance comparable[g]
to the five-point linear interpolation. This is expected because
for plane wave normal incidence, a larger stencil on the trans-
verse direction is not important. For oblique incidence angles, 4]
the performance of the three-point linear interpolation deterio-
rates. On the other hand, if the second order derivative termgs]
are used, the performance is better than linear interpolation at
45°, but deteriorates at°Q exhibiting complementary behavior 6]
according to the incident angle. This behavior can be exploredI
when implementing subgridding schemes in different regions
of a FDTD grid. As expected, the five-point linear interpolation ]
has a smaller spurious reflection overall and largest reflection
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